Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 356
Filter
1.
J Agric Food Chem ; 72(11): 5503-5525, 2024 Mar 20.
Article in English | MEDLINE | ID: mdl-38442367

ABSTRACT

Conjugated linoleic acid (CLA) has been extensively characterized due to its many biological activities and health benefits, but conjugated linolenic acid (CLnA) is still not well understood. However, CLnA has shown to be more effective than CLA as a potential functional food ingredient. Current research has not thoroughly investigated the differences and advantages between CLnA and CLA. This article compares CLnA and CLA based on molecular characteristics, including structural, chemical, and metabolic characteristics. Then, the in vivo research evidence of CLnA on various health benefits is comprehensively reviewed and compared with CLA in terms of effectiveness and mechanism. Furthermore, the potential of CLnA in production technology and product protection is analyzed. In general, CLnA and CLA have similar physicochemical properties of conjugated molecules and share many similarities in regulation effects and pathways of various health benefits as well as in the production methods. However, their specific properties, regulatory capabilities, and unique mechanisms are different. The superior potential of CLnA must be specified according to the practical application patterns of isomers. Future research should focus more on the advantageous characteristics of different isomers, especially the effectiveness and safety in clinical applications in order to truly exert the potential value of CLnA.


Subject(s)
Food Ingredients , Linoleic Acids, Conjugated , alpha-Linolenic Acid/chemistry , Linoleic Acids, Conjugated/chemistry , Isomerism , Functional Food
2.
Food Funct ; 14(14): 6376-6384, 2023 Jul 17.
Article in English | MEDLINE | ID: mdl-37335179

ABSTRACT

Phytoglycogen-derived self-assembled nanoparticles (SMPG/CLA) and enzymatic-assembled nanoparticles (EMPG/CLA) were fabricated for delivery of conjugated linoleic acid (CLA). After measuring the loading rate and yield, the optimal ratio for both assembled host-guest complexes was 1 : 10, and the maximum loading rate and yield for EMPG/CLA were 1.6% and 88.1%, respectively, higher than those of SMPG/CLA. Structural characterization studies showed that the assembled inclusion complexes were successfully constructed, and had a specific spatial architecture with inner-core amorphous and external-shell crystalline parts. A higher protective effect against oxidation of EMPG/CLA was observed than that of SMPG/CLA, supporting efficient complexation for a higher order crystalline structure. After 1 h of gastrointestinal digestion under the simulated conditions, 58.7% of CLA was released from EMPG/CLA, which was lower than that released from SMPG/CLA (73.8%). These results indicated that in situ enzymatic-assembled phytoglycogen-derived nanoparticles might be a promising carrier platform for protection and targeted delivery of hydrophobic bioactive ingredients.


Subject(s)
Linoleic Acids, Conjugated , Nanoparticles , Hydrophobic and Hydrophilic Interactions , Linoleic Acids, Conjugated/chemistry , Nanoparticles/chemistry , Oxidation-Reduction
3.
Food Chem ; 422: 136151, 2023 Oct 01.
Article in English | MEDLINE | ID: mdl-37126956

ABSTRACT

To improve the stability and broaden the application of resveratrol (Res), the Res conjugated linoleate (RCL) were synthesized successfully using Res and 9c,11t-conjugated linoleic acid (CLA) with N, N'-carbonyldiimidazole (CDI) as catalyst for the first time. The Res conversion and the yield of RCL were achieved at 96.85% and 65.30%, respectively. In comparison with Res, RCL has lower acid value (1.80 mg/g) and peroxide value (3.25 meq/kg) and higher thermal stability (improved by 115.3 ℃). RCL was identified as a novel triester compound with a physical appearance as a light-yellow viscous oil. The 9c,11t-CLA was activated by CDI first, reacted with Res to form 4'-Res-ester preferentially, followed by 5,4'-Res-ester and 3,5,4'-Res-ester. The transition-state quaternary ring structures of monoesters were the key structures determining the formation of RCL. This study provided an efficient and eco-friendly approach for the synthesis of RCL, promoting the development of the synthesis of Res long-chain fatty acid ester.


Subject(s)
Linoleic Acid , Linoleic Acids, Conjugated , Linoleic Acid/chemistry , Resveratrol , Linoleic Acids , Linoleic Acids, Conjugated/chemistry , Fatty Acids , Esters
4.
Food Funct ; 14(3): 1685-1698, 2023 Feb 06.
Article in English | MEDLINE | ID: mdl-36692407

ABSTRACT

Although conjugated linoleic acid (CLA) has been shown to have anti-obesity properties, the effect and mechanism of CLA in alleviating glycolipid metabolism disorders remains unclear. In this work, it was observed that rats fed a high-fat diet (HFD) had lower body weight and body fat levels after 9 weeks of low-dose and high-dose CLA interventions. The results of blood biochemical indices showed that CLA significantly reduced the levels of total cholesterol, triglycerides, fasting blood glucose and insulin. Additionally, high-dose CLA could restore the intestinal microbiota composition, including increasing the relative abundances of short-chain fatty acid (SCFA)-producing microbiota, such as Dubosiella, Faecalibaculum and Bifidobacterium; decreasing the relative abundances of Enterococcus and Ruminococcus_2; and increasing the content of SCFAs in feces and serum. Further analysis showed that high-dose CLA could increase the expression levels of Insr, Irs-2, Akt and Glut4 in the liver tissue of HFD-induced obese rats. Consistently, high dose of CLA could reversibly improve the downregulation of INSR, AKT, PI3K and GLUT4 protein expression caused by HFD and reverse the decline in AKT phosphorylation levels. Correlation clustering analysis with a heatmap showed that the changes in specific microbiota induced by high-dose CLA were correlated with changes in obesity-related indices and gene expression. The molecular docking analysis showed that the molecular docking of SCFAs with the IRS-2, AKT and GLUT4 proteins had high linking activity. The results supported that CLA can alleviate glycolipid metabolic imbalances associated with obesity by altering the intestinal microbiota to induce the production of SCFAs and thereby activate the INSR/IRS-2/AKT/GLUT4 pathway. This study supports CLA may be preferentially used by the intestinal microbiota of the host to promote its health.


Subject(s)
Gastrointestinal Microbiome , Linoleic Acids, Conjugated , Metabolic Diseases , Rats , Animals , Linoleic Acids, Conjugated/chemistry , Glycolipids , Proto-Oncogene Proteins c-akt , Molecular Docking Simulation , Obesity/drug therapy , Obesity/metabolism , Fatty Acids, Volatile
5.
Food Chem ; 409: 135257, 2023 May 30.
Article in English | MEDLINE | ID: mdl-36584529

ABSTRACT

Conjugated linoleic acid (CLA) is a collective term for the octadecadienoic acid isomers containing conjugated double bonds. This article reviewed CLA isomers from biological activities, biosynthesis mechanisms and analytical methods. The biological activities of CLA isomers in anti-obesity, cardiovascular protection, diabetes management and anti-cancer in vitro and in vivo were mainly reviewed. More attention has been paid to the production of the specific CLA isomer due to its biological activity. The biosynthesis methods of CLA isomers, such as dietary modification in ruminants and fermentation by microorganisms & enzymes, were systematically introduced. A rapid, accurate and economic analysis method will promote the research in both biological activities and biosynthesis mechanisms of CLA isomers. The merits of UV spectrometry, GC, HPLC, MS and CE used in the analysis of CLA isomers were also compared in detail. This paper aims to put into perspective the current status and future trends on CLA isomers.


Subject(s)
Linoleic Acids, Conjugated , Linoleic Acids, Conjugated/chemistry , Isomerism , Chromatography, High Pressure Liquid
6.
J Oleo Sci ; 70(12): 1797-1803, 2021 Dec 03.
Article in English | MEDLINE | ID: mdl-34759111

ABSTRACT

The antiadipogenic activity of conjugated linoleic acids (CLA) in the form of phosphatidylcholine-bound (CLA-PC) or free fatty acids (FFA; CLA-FFA) was evaluated using 3T3-L1 adipocytes. Phosphatidylcholine from soya (soy-PC) was used as the comparison of PC form. Both the lipid accumulation and activity of glycerol-3-phosphate dehydrogenase were measured to determine lipogenesis, whereas the glycerol content was measured to evaluate lipolysis. The CLA uptake also measured to find out the utilization of CLA by the cells. As a results, lipid accumulation in 3T3-L1 adipocytes was inhibited in a dose-dependent manner following treatment with CLA-PC (50-400 µM). Both CLA-PC and soy-PC significantly suppressed lipid accumulation compared with CLA-FFA, even though the amount of CLA in CLA-PC was a half than CLA-FFA. The CLA uptake of PC form was superior to FFA form, however, no difference was noted between CLA-PC and soy-PC. These forms exerted their antiadipogenic activity via the suppression of lipogenesis, and not by increasing lipolysis. Short-term treatment, especially in the middle stage of differentiation, was more effective than long-term treatment; especially for CLA-FFA. The antiadipogenic effect of CLA-PC was partially attributed to the chemical structure of the PC molecule. These results provide important information for the utilization of physiologically functional fatty acids and particularly CLA in the food and medical fields.


Subject(s)
Adipocytes/metabolism , Adipogenesis/drug effects , Linoleic Acids, Conjugated/chemistry , Linoleic Acids, Conjugated/pharmacology , 3T3-L1 Cells , Animals , Fatty Acids, Nonesterified/chemistry , Fatty Acids, Nonesterified/pharmacology , Lipogenesis/drug effects , Mice , Phosphatidylcholines/chemistry , Phosphatidylcholines/pharmacology , Glycine max/chemistry , Structure-Activity Relationship
7.
J Oleo Sci ; 70(10): 1357-1366, 2021 Oct 05.
Article in English | MEDLINE | ID: mdl-34497182

ABSTRACT

A homemade nanonickel catalyst was made by the ultrasonic liquid-phase reduction method, characterized by X-ray diffraction, scanning electron microscopy and transmission electron microscopy, and applied to the isomerization reaction of high linoleic acid sunflower oil. Scanning electron microscopy (SEM), transmission electron microscopy (TEM) and particle size analysis showed that the homemade nickel particles were spherical, uniformly dispersed, less agglomerated, 20 to 75 nm in size, and nanoscale nickel powder. Compared with commercially available Raney nickel, the homemade nanonickel powder has a larger specific surface area, smaller pore size and higher catalytic activity. The X-ray diffraction spectrum of the homemade nanonickel powder had distinct diffraction peaks at its characteristic peaks which indicated that the powder was pure nickel. The nanometal nickel particles are fully dispersed in high oleic sunflower oil under the action of ultrasound. The results showed that it could effectively reduce the activation reaction time of nanonickel, and the conversion rate of conjugated linoleic acid could reach 86.24%. The process of activating the catalyst is omitted, the number of times of repeated uses of the nanonickel catalyst is increased, and the environmental pollution of the production is avoided. To obtain sunflower oil rich in CLA, it also provides a new idea for the preparation of conjugated linoleic acid.


Subject(s)
Linoleic Acids, Conjugated/chemistry , Nanoparticles/chemistry , Nickel/chemistry , Sunflower Oil/chemistry , Ultrasonic Waves , Catalysis , Chemical Phenomena , Environmental Pollution/prevention & control , Isomerism , Particle Size , Powders
8.
Food Chem ; 362: 130212, 2021 Nov 15.
Article in English | MEDLINE | ID: mdl-34091171

ABSTRACT

Conjugated linoleic acid contains unsaturated fatty acids with multiple bioactivities, but it has poor oxidative and physical stabilities. Its emulsion was fabricated with glycosylated whey protein isolate and hydrolysates of glycosylated whey protein isolate to enhance its stability. An obvious decrease in peroxide value, thiobarbituric acid-reactive substances, particle size and creaming index of emulsion loaded by hydrolysates of glycosylated protein isolate with the increase of hydrolysis time. However, the absolute value of zeta-potential and interfacial adsorption rate of emulsion stabilized by hydrolysates of glycosylated whey protein isolate, were increased by 10.99 and 16.94% at hydrolysis time of 120 min, compared with emulsion loaded by glycosylated whey protein isolate. Thus, limited hydrolysis of glycosylated whey protein isolate as an effective method, remarkably improved the oxidative and physical stability of emulsion.


Subject(s)
Emulsions/chemistry , Linoleic Acids, Conjugated/chemistry , Whey Proteins/chemistry , Adsorption , Antioxidants/chemistry , Emulsifying Agents/chemistry , Glycosylation , Hydrolysis , Oxidation-Reduction , Particle Size , Water/chemistry , Whey Proteins/isolation & purification
9.
Food Funct ; 12(11): 5051-5065, 2021 Jun 08.
Article in English | MEDLINE | ID: mdl-33960342

ABSTRACT

The aim was to investigate the potential effect of functional milk fat (FMF), naturally enriched in conjugated linoleic acid, on the prevention of liver lipid accumulation and some biochemical mechanisms involved in the liver triacylglycerol (TAG) regulation in high-fat (HF) fed rats. Male Wistar rats were fed (60 days) with S7 (soybean oil, 7%) or HF diets: S30 (soybean oil, 30%), MF30 (soybean oil, 3% + milk fat -MF-, 27%) or FMF30 (soybean oil, 3% + FMF, 27%). Nutritional parameters, hepatic fatty acid (FA) composition, liver and serum TAG levels, hepatic TAG secretion rate (TAG-SR), lipoprotein lipase (LPL) activity in adipose tissue and muscle, activities and/or mRNA levels of lipogenic and ß-oxidative enzymes, and mRNA levels of transcription factors and FA transport proteins were assessed. The hepatic lipid accumulation induced by the S30 diet was associated with increased mRNA levels of FA transporters; and it was prevented by FMF through an increase in the hepatic TAG-SR, carnitine palmitoyltransferase-1a activity and peroxisome proliferator-activated receptor alpha mRNA levels, as well as by a reduction of the mRNA levels of FA transporters. The hypotriacylglyceridaemia observed in S30 was related with an increased LPL activity in adipose tissue and it was reverted by FMF through the increased hepatic TAG-SR. In brief, FMF prevented the liver lipid accumulation induced by HF diets by increasing the hepatic TAG-SR and ß-oxidation, and reducing the hepatic FA uptake. The increased hepatic TAG-SR induced by FMF could be responsible for the attenuation of serum TAG alterations.


Subject(s)
Diet, High-Fat/adverse effects , Functional Food , Linoleic Acids, Conjugated/chemistry , Linoleic Acids, Conjugated/pharmacology , Liver/drug effects , Liver/metabolism , Milk/chemistry , Adipose Tissue/metabolism , Animals , Fatty Acids/metabolism , Fatty Liver/metabolism , Lipid Metabolism/drug effects , Male , Non-alcoholic Fatty Liver Disease/metabolism , Rats , Rats, Wistar , Soybean Oil/metabolism , Triglycerides
10.
Neurotox Res ; 39(3): 815-825, 2021 Jun.
Article in English | MEDLINE | ID: mdl-33713300

ABSTRACT

Oxidative stress has been shown to play an important role in the pathogenesis of multiple sclerosis (MS). Curcumin (CUR), an antioxidant compound, can be a potent treatment for neurodegenerative diseases, such as MS. CUR has poor bioavailability; therefore, it is used in nanoforms to increase its bioavailability. In the present study, the effects of CUR and conjugated linoleic acid-CUR (Lino-CUR) on spatial memory and oxidative stress in a putative animal model of MS were investigated. Forty-nine adult male Wistar rats (250 ± 50 g) were randomly divided into seven groups (n = 7): control, sham, ethidium bromide (EB), CUR (20 and 40 µg/kg) + EB, and Lino-CUR (20 and 40 µg/kg) + EB groups. Following MS induction, the groups were treated for 5 consecutive days. Finally, spatial memory and levels of oxidative stress parameters were assessed. Treatment with CUR and Lino-CUR at two doses significantly improved spatial memory and reduced oxidative stress parameters in the experimental models of MS. Furthermore, the effects of high dose (40 µg/kg) of Lino-CUR were more remarkable. These findings suggest that the microinjection of CUR in its synthetic form Lino-CUR significantly ameliorated spatial memory, through the reduction of oxidative stress markers in the brain of studied animals as a rat model of MS.


Subject(s)
Cognitive Dysfunction/prevention & control , Curcumin/administration & dosage , Demyelinating Diseases/prevention & control , Ethidium/toxicity , Linoleic Acids, Conjugated/administration & dosage , Oxidative Stress/drug effects , Animals , Cognitive Dysfunction/chemically induced , Cognitive Dysfunction/metabolism , Curcumin/chemistry , Demyelinating Diseases/chemically induced , Demyelinating Diseases/metabolism , Enzyme Inhibitors/toxicity , Linoleic Acids, Conjugated/chemistry , Male , Oxidative Stress/physiology , Rats , Rats, Wistar
11.
Ultrason Sonochem ; 71: 105365, 2021 Mar.
Article in English | MEDLINE | ID: mdl-33125963

ABSTRACT

α-lactalbumin was modified by ultrasound (US, 20 kHz, 43 ± 3.4 W/cm-2) pre-treatments (0, 15, 30 and 60 min) and laccase cross-linking of sonicated α-lactalbumin was used to evaluate the physical and oxidative stability of conjugated linoleic acid (CLA) emulsions. The emulsions prepared with laccase cross-linking US-α-lactalbumin (α-lactalbumin treated with US pre-treatment) and US-α-lactalbumin were scrutinized for oxidative and physical stability at room temperature for two weeks of storage. Laccase cross-linking US-α-lactalbumin (Lac-US-α-lactalbumin) revealed improved physical stability in comparison with US-α-lactalbumin, specified by droplet size, structural morphology, adsorbed protein, emulsifying properties and creaming index. SDS-PAGE analysis showed that there was formation of polymers in Lac-US-α-lactalbumin emulsion. Surface hydrophobicity of Lac-US-α-lactalbumin was higher than that of US-α-lactalbumin, and gradually enhanced with the increase of ultrasound time. More importantly, the measurements of peroxide values and conjugated dienes were used to study the oxidative stability of the CLA emulsions. The Lac-US-α-lactalbumin emulsion proved to be reducing the synthesis of fatty acid hydroperoxides and less conjugated dienes compared to the native and US-α-lactalbumin emulsions. This study revealed that the combination of US pre-treatment and laccase cross-linking might be an effective technique for the modification of CLA emulsions.


Subject(s)
Laccase/metabolism , Lactalbumin/chemistry , Linoleic Acids, Conjugated/chemistry , Oils/chemistry , Sonication , Water/chemistry , Adsorption , Electric Conductivity , Emulsions , Hydrogen-Ion Concentration , Oxidation-Reduction , Temperature
12.
J Appl Microbiol ; 130(5): 1602-1610, 2021 May.
Article in English | MEDLINE | ID: mdl-33030792

ABSTRACT

AIMS: The aim of the study was to investigate the isomerization of linoleic (LA) and linolenic acids (LNAs) into their conjugated isomers by Propionibacterium freudenreichii DSM 20270 and utilize this feature for microbial enrichment of blackcurrant press residue (BCPR) with health-beneficial conjugated fatty acids. METHODS AND RESULTS: First, the ability of P. freudenreichii to isomerize 0·4 mg ml-1 of LA and LNA was studied in lactate growth medium. Free LA and α-LNA were efficiently converted into conjugated linoleic (CLA) and α-linolenic acid (α-CLNA), being the predominant isomers c9,t11-CLA and c9,t11,c15-CLNA, respectively. The bioconversion of α-LNA by P. freudenreichii was more efficient in terms of formation rate, yield and isomer-specificity. Thereafter, free LA and LNAs obtained from hydrolysed BCPR neutral lipids, by lipolytically active oat flour, were subjected to microbial isomerization in BCPR slurries. In 10% (w/v) slurries, a simultaneous enrichment in c9,t11-CLA and c9,t11,c15-CLNA of up to 0·51 and 0·29 mg ml-1 was observed from starting levels of 0·96 mg LA ml-1 and 0·37 mg α-LNA ml-1 respectively. CONCLUSIONS: This study shows that growing cultures of P. freudenreichii DSM 20270 are able to simultaneously enrich BCPR with health-beneficial conjugated isomers of LA and α-LNA. SIGNIFICANCE AND IMPACT OF THE STUDY: This study demonstrates that microbial isomerization technique can be utilized to enrich lipid-containing plant materials with bioactive compounds and thereby enable valorization of low value plant-based side streams from food industry into value-added food ingredients.


Subject(s)
Linoleic Acids, Conjugated/biosynthesis , Propionibacterium freudenreichii/metabolism , Refuse Disposal/methods , Ribes/chemistry , Hydrolysis , Isomerism , Linoleic Acids, Conjugated/chemistry , Linolenic Acids/chemistry , Linolenic Acids/metabolism , Lipid Metabolism , Lipids/analysis , Propionibacterium freudenreichii/growth & development
13.
J Food Sci ; 85(12): 4188-4193, 2020 Dec.
Article in English | MEDLINE | ID: mdl-33174214

ABSTRACT

The objectives were (1) to produce soy oil conjugated linoleic acid (CLA) triacylglycerides in large quantities with solar light photoisomerization, utilizing iodine as a photosensitizer, (2) to study the temperature variation in the photoisomerized oil during various hours of the day, and (3) to study the variations in solar light intensity during various hours of the day. A 0.5% iodine containing soy oil in glass box with a glass lid was photoisomerized, under natural solar light for 0, 11, and 27 days, and CLA isomers were determined with gas chromatography with flame ionization detector. After 27 days of solar light photoisomerization, the cis-9, trans-11 CLA; other cis, trans CLA; trans-10, cis-12 CLA; trans, trans CLA, and total CLA were found to be 0.62 ± 0.05%, 1.04 ± 0.09%, 0.54 ± 0.11%, 6.16 ± 0.68%, and 8.37 ± 0.90%, respectively. The concentration of CLA isomers between 0 and 11 days was significantly different (p < .05), and the concentration of CLA isomers between 0 and 27 days was also significantly different (p < .05). There is no significant difference (p > .05) in CLA concentration between 11 and 27 days treatment. The CLA was not found in control soy oil samples. The CLA isomers were measured with GDFID in 45 min instead of 120min. The temperature of the edible oil in glass boxes ranged from 26 °C (8 a.m.) to 56 °C (1 p.m.). The light intensity ranged from 4,146 lux (7 p.m.) to 95,490 lux (12 p.m.). Glass lid on the glass box affected light transmission to a small but statistically significant extent (p < .05). The CLA isomers could be energy efficiently and inexpensively produced in soy oil by solar light photoisomerization, at low temperature and without needing expensive reactor vessels or catalysts. PRACTICAL APPLICATION: CLA was produced effectively with the iodine sensitized solar light photoisomerization. CLA is produced in large quantities, inexpensively, for possible food additive applications. Produced CLA is in the form of stable triacylglycerides.


Subject(s)
Food Additives/analysis , Light , Linoleic Acids, Conjugated/analysis , Soybean Oil/analysis , Iodine/chemistry , Isomerism , Linoleic Acids, Conjugated/chemistry , Linoleic Acids, Conjugated/radiation effects , Soybean Oil/chemistry , Soybean Oil/radiation effects
14.
Food Funct ; 11(10): 8878-8892, 2020 Oct 21.
Article in English | MEDLINE | ID: mdl-32986051

ABSTRACT

Multiple O1/W/O2 nanoemulsions and O1/W nanoemulsions fortified with CLA or CoQ10 were produced using extra virgin olive or olive pomace oil and were also incorporated with polyphenols extracted from olive kernel to enhance their kinetic and chemical stability. They were prepared using a high-speed ultrasonic homogenizer. Specifically, nanoemulsions with 6 wt% lipid phase and 6 wt% non-ionic emulsifier (Tween 40) were produced and they demonstrated a droplet diameter >200 nm and high encapsulation stability during 30 days of storage at 4 °C or 25 °C. The incorporation of CLA or CoQ10 and polyphenolic compounds facilitated the homogenization of emulsions, reducing the droplet size and enhancing their chemical stability, and their bioactive retention values were >79%. O1/W/O2 nanoemulsions were produced using a mixture of non-ionic emulsifiers (Span 20 and Tween 40) and the O1/W enriched nanoemulsion as the dispersed phase. All multiple emulsions showed a bimodal droplet size distribution and Newtonian behavior while polyphenols facilitated their homogenization. Both vegetable oils resulted in samples with high kinetic and chemical stability; the bioactive retention values were found to be >80% at the end of 30 days of storage at 4 °C or 25 °C. Extra virgin olive oil resulted in more stable nanoemulsions in regards to kinetic and chemical stability at 4 °C, showing limited creaming and sedimentation boundary. Multiple nanoemulsions with the lowest initial droplet size presented the lowest droplet diameter growth and phase separation and the highest retention values. By comparing O1/W nanoemulsions and O1/W/O2 nanoemulsions, we noted that the reduction in the total phenolic content and antioxidant activity during storage was higher in the O1/W type. However, both delivery systems protected CLA and CoQ10 presenting high retention during storage. FTIR spectra before and after ultrasonic homogenization indicated that the sonication process did not significantly affect the lipid phase of O1/W/O2 nanoemulsions.


Subject(s)
Linoleic Acids, Conjugated/chemistry , Olive Oil/chemistry , Plant Extracts/pharmacology , Polyphenols/pharmacology , Ubiquinone/analogs & derivatives , Cell Encapsulation , Chemical Phenomena , Emulsions/chemistry , Food, Fortified/analysis , Particle Size , Ubiquinone/chemistry
15.
Molecules ; 25(16)2020 Aug 11.
Article in English | MEDLINE | ID: mdl-32796664

ABSTRACT

A density functional theory (DFT) study of the 1H- and 13C-NMR chemical shifts of the geometric isomers of 18:2 ω-7 conjugated linoleic acid (CLA) and nine model compounds is presented, using five functionals and two basis sets. The results are compared with available experimental data from solution high resolution nuclear magnetic resonance (NMR). The experimental 1H chemical shifts exhibit highly diagnostic resonances due to the olefinic protons of the conjugated double bonds. The "inside" olefinic protons of the conjugated double bonds are deshielded than those of the "outside" protons. Furthermore, in the cis/trans isomers, the signals of the cis bonds are more deshielded than those of the trans bonds. These regularities of the experimental 1H chemical shifts of the olefinic protons of the conjugated double bonds are reproduced very accurately for the lowest energy DFT optimized single conformer, for all functionals and basis sets used. The other low energy conformers have negligible effects on the computational 1H-NMR chemical shifts. We conclude that proton NMR chemical shifts are more discriminating than carbon, and DFT calculations can provide a valuable tool for (i) the accurate prediction of 1H-NMR chemical shifts even with less demanding functionals and basis sets; (ii) the unequivocal identification of geometric isomerism of CLAs that occur in nature, and (iii) to derive high resolution structures in solution.


Subject(s)
Carbon Isotopes/analysis , Density Functional Theory , Linoleic Acids, Conjugated/chemistry , Magnetic Resonance Spectroscopy/methods , Protons , Stereoisomerism
16.
Article in English | MEDLINE | ID: mdl-32755819

ABSTRACT

Conjugated linoleic and linolenic acids (CLA and CLnA) can be found in dairy, ruminant meat and oilseeds, these types of unsaturated fatty acids consist of various positional and geometrical isomers, and have demonstrated health-promoting potential for human beings. Extensive reviews have reported the physiological effects of CLA, CLnA, while little is known regarding their isomer-specific effects. However, the isomers are difficult to identify, owing to (i) the similar retention time in common chromatographic methods; and (ii) the isomers are highly sensitive to high temperature, pH changes, and oxidation. The uncertainties in molecular structure have hindered investigations on the physiological effects of CLA and CLnA. Therefore, this review presents a summary of the currently available technologies for the structural determination of CLA and CLnA, including the presence confirmation, double bond position determination, and the potential stereo-isomer determination. Special focus has been projected to the novel techniques for structure determination of CLA and CLnA. Some possible future directions are also proposed.


Subject(s)
Linoleic Acids, Conjugated/chemistry , Mass Spectrometry/methods , alpha-Linolenic Acid/chemistry , Animals , Chromatography, Liquid , Linoleic Acids, Conjugated/analysis , Milk/chemistry , Models, Molecular , Molecular Conformation , alpha-Linolenic Acid/analysis
17.
Food Funct ; 11(4): 3657-3667, 2020 Apr 30.
Article in English | MEDLINE | ID: mdl-32296804

ABSTRACT

This study aimed to investigate the effects of conjugated linoleic acid (CLA) on intestinal epithelial barrier function and explore the underlying mechanisms. IPEC-J2 cells and mice were treated with different CLA isomers. The intestinal epithelial barrier function determined by transepithelial electrical resistance (TEER), the expression of tight junction proteins, and the involvement of G-protein coupled receptor 120 (GPR120), intracellular calcium ([Ca2+]i) and myosin light chain kinase (MLCK) were assessed. In vitro, c9, t11-CLA, but not t10, c12-CLA isomer, impaired epithelial barrier function in IPEC-J2 by downregulating the expression of tight junction proteins. Meanwhile, c9, t11-CLA isomer enhanced GPR120 expression, while knockdown of GPR120 eliminated the impaired epithelial barrier function induced by c9, t11-CLA isomer. In addition, c9, t11-CLA isomer increased [Ca2+]i and activated the MLCK signaling pathway in a GPR120-dependent manner. However, chelation of [Ca2+]i reversed c9, t11-CLA isomer-induced MLCK activation and the epithelial barrier function impairment of IPEC-J2. Furthermore, inhibition of MLCK totally abolished the impairment of epithelial barrier function induced by c9, t11-CLA. In vivo, dietary supplementation of c9, t11-CLA rather than t10, c12-CLA isomer decreased the expression of intestinal tight junction proteins and GPR120, increased intestinal permeability, and activated the MLCK signaling pathway in mice. Taken together, our findings showed that c9, t11-CLA, but not t10, c12-CLA isomer, impaired intestinal epithelial barrier function in IPEC-J2 cells and mice through activation of GPR120-[Ca2+]i and the MLCK signaling pathway. These data provided new insight into the regulation of the intestinal epithelial barrier by different CLA isomers and more references for CLA application in humans and animals.


Subject(s)
Intestines/drug effects , Linoleic Acids, Conjugated/pharmacology , Myosin-Light-Chain Kinase/metabolism , Animals , Cells, Cultured/drug effects , Down-Regulation , Epithelial Cells/drug effects , Isomerism , Linoleic Acids, Conjugated/chemistry , Male , Mice , Mice, Inbred C57BL , Signal Transduction
18.
Cells ; 9(4)2020 03 29.
Article in English | MEDLINE | ID: mdl-32235294

ABSTRACT

Energy balance, mitochondrial dysfunction, obesity, and insulin resistance are disrupted by metabolic inflexibility while therapeutic interventions are associated with improved glucose/lipid metabolism in skeletal muscle. Conjugated linoleic acid mixture (CLA) exhibited anti-obesity and anti-diabetic effects; however, the modulatory ability of its isomers (cis9, trans11, C9; trans10, cis12, C10) on the metabolic flexibility in skeletal muscle remains to be demonstrated. Metabolic inflexibility was induced in rat by four weeks of feeding with a high-fat diet (HFD). At the end of this period, the beneficial effects of C9 or C10 on body lipid content, energy expenditure, pro-inflammatory cytokines, glucose metabolism, and mitochondrial efficiency were examined. Moreover, oxidative stress markers, fatty acids, palmitoyletanolamide (PEA), and oleyletanolamide (OEA) contents along with peroxisome proliferator-activated receptors-alpha (PPARα), AKT, and adenosine monophosphate-activated protein kinase (AMPK) expression were evaluated in skeletal muscle to investigate the underlying biochemical mechanisms. The presented results indicate that C9 intake reduced mitochondrial efficiency and oxidative stress and increased PEA and OEA levels more efficiently than C10 while the anti-inflammatory activity of C10, and its regulatory efficacy on glucose homeostasis are associated with modulation of the PPARα/AMPK/pAKT signaling pathway. Our results support the idea that the dissimilar efficacy of C9 and C10 against the HFD-induced metabolic inflexibility may be consequential to their ability to activate different molecular pathways.


Subject(s)
Diet, High-Fat , Dietary Supplements , Feeding Behavior , Linoleic Acids, Conjugated/chemistry , Linoleic Acids, Conjugated/pharmacology , Muscle, Skeletal/metabolism , Protective Agents/pharmacology , Adenylate Kinase/metabolism , Animals , Energy Metabolism/drug effects , Fatty Acids/metabolism , Glucose/metabolism , Glucose Transporter Type 4/metabolism , Homeostasis/drug effects , Inflammation/pathology , Isomerism , Lipid Metabolism/drug effects , Liver/drug effects , Liver/metabolism , Male , Mitochondria/drug effects , Mitochondria/metabolism , Oxidation-Reduction , Oxidative Stress/drug effects , PPAR alpha/metabolism , Proto-Oncogene Proteins c-akt/metabolism , Rats, Wistar
19.
J Agric Food Chem ; 68(12): 3758-3769, 2020 Mar 25.
Article in English | MEDLINE | ID: mdl-32125157

ABSTRACT

To investigate the specific functions of conjugated fatty acids (CFAs) produced by the probiotic bacterium, α-linolenic acid was isomerized by Lactobacillus plantarum ZS2058, and two different conjugated linolenic acid (CLNA) isomers were successfully isolated: c9, t11, c15-CLNA (CLNA1) and t9, t11, c15-CLNA (CLNA2). The effects and mechanism of CLNA crude extract and individual isomers on colitis were explored. CLNA significantly inhibited weight loss, the disease activity index, and colon shortening. Additionally, CLNA alleviated histological damage, protected colonic mucus layer integrity, and significantly upregulated the concentration of tight junction proteins (ZO-1, occludin, E-cadherin 1, and claudin-3). CLNA significantly attenuated the level of proinflammatory cytokines (TNF-α, IL-1ß, and IL-6) while upregulating the expression of the colonic anti-inflammatory cytokine IL-10 and nuclear receptor peroxisome-activated receptor-γ. Moreover, CLNA increased the activity of oxidative stress-related enzymes (SOD, GSH, and CAT), and the myeloperoxidase activity was significantly decreased by CLNA. Meanwhile, the concentrations of CLNA in the liver and conjugated linoleic acid in the colonic content were significantly increased because of the treatment of CLNA. Furthermore, CLNA could rebalance the intestinal microbial composition of colitis mice, including increasing the α-diversity. CLNA1 and CLNA2 increased the abundance of Ruminococcus and Prevotella, respectively.


Subject(s)
Colitis/drug therapy , Lactobacillus plantarum/chemistry , Linoleic Acids, Conjugated/therapeutic use , Animals , Colitis/chemically induced , Colitis/pathology , Cytokines/analysis , Dextran Sulfate , Linoleic Acids, Conjugated/chemistry , Male , Mice , Mice, Inbred C57BL
20.
Molecules ; 25(5)2020 Mar 09.
Article in English | MEDLINE | ID: mdl-32182796

ABSTRACT

Conjugated linolenic acid (CLNA) is a type of ω-3 fatty acid which has been proven to have a series of benefits. However, there is no study about the function of Lactobacillus-derived CLNA isomer. Lactobacillus plantarum ZS2058 has been proven to manifest comprehensive functions and can produce CLNA. To investigate the specific functions of CLNA produced by this probiotic bacterium, two different conjugated α-linolenic acid (CLNA) isomers were successfully isolated. These isoforms, CLNA1 (c9, t11, c15-CLNA, purity 97.48%) and CLNA2 (c9, t11, t15-CLNA, purity 99.00%), both showed the ability to inhibit the growth of three types of colon cancer cells in a time- and concentration-dependent manner. In addition, the expression of MDA in Caco-2 cells was increased by CLNA1 or CLNA2, which indicated that lipid peroxidation was related to the antiproliferation activity of CLNAs. An examination of the key protein of pyroptosis showed that CLNA1 induced the cleavage of caspase-1 and gasdermin-D, while CLNA2 induced the cleavage of caspase-4, 5 and gasdermin-D. The addition of relative inhibitors could alleviate the pyroptosis by CLNAs. CLNA1 and CLNA2 showed no effect on caspase-3, 7, 9 and PARP-1, which were key proteins associated with apoptosis. No sub-diploid apoptotic peak appeared in the result of PI single staining test. In conclusion, CLNA1 activated caspase-1 and induced Caco-2 cell pyroptosis, whereas CLNA2 induced pyroptosis through the caspase-4/5-mediated pathway. The inhibition of Caco-2 cells by the two isomers was not related to apoptosis. This is the first study on the function of Lactobacillus-derived CLNA isomer. The inhibition pathway of Lactobacillus-derived CLNA isomer on colon cancer cells were proved.


Subject(s)
Cell Proliferation/drug effects , Colonic Neoplasms/drug therapy , Lactobacillus plantarum/chemistry , Linoleic Acids, Conjugated/pharmacology , Apoptosis/drug effects , Caco-2 Cells , Cell Line, Tumor , Humans , Isomerism , Linoleic Acids, Conjugated/chemistry , Linoleic Acids, Conjugated/classification
SELECTION OF CITATIONS
SEARCH DETAIL
...